

Update on the CDX-U Liquid Lithium Limiter Experiments and LTX Status

- R. Kaita, R. Majeski, T. Gray, S. Jardin, H. Kugel, P. Marfuta, J. Spaleta, J. Timberlake, L. Zakharov, *Princeton Plasma Physics Laboratory*
- V. Soukhanovskii, T. Rognlein, Lawrence Livermore National Laboratory
- M. Finkenthal, D. Stutman, Johns Hopkins University
- G. Antar, R. Doerner, S. Luckhardt, R. Seraydarian, *University of California at San Diego*
- R. Maingi, Oak Ridge National Laboratory
- S. Angelini, Columbia University
- M. Frost, Kent State University University
- C. Wolfe, Kutstown University of Pennsylvania

Work supported in part by USDOE Contract DE-AC02-76-CHO3073

- ◆ Liquid lithium experiments on CDX-U have demonstrated
 - Low recycling
 - Impurity removal
 - Improved confinement
 - Increased stability with apparently broadened profiles
 - Efficient loop voltage utilization
- Latest issues have involved mechanical properties of liquid lithium
 - Stable in absence of toroidal current paths during plasmas
 - Challenge has been to control lithium migration in *long term* operation

Toroidal limiter tray designed with electrical break to insure mechanical stability of liquid lithium CDX-U

Limiter tray surface ≈ outermost flux surface

LTX

- Very low normal component of confining B-field
- Toroidal electrical break and single-point tray ground controls flow of current from plasma

Liquid lithium mechanically stable with toroidal gap in limiter tray

CDX-U

- ▶ **No** motion of the liquid observed with fast camera
- No unipolar arcing
- No spatter, droplets, etc

Mechanical stability persisted long enough for liquid lithium limiter experiments to be performed CDX-U

 Lithium remained stable as current flowed to toroidally to ground

- >70% of tray current flowed in liquid lithium
- Current density commonly 20-30 A/cm² for several ms

Plasma Facing Components Meeting Livermore, California 6-9 December 2004

Tendency of liquid lithium to migrate eventually "shorted" toroidal gap in limiter tray CDX-U

Lithium migrated with time over tray edge

 Glow discharge cleaning and tray heating permitted lithium flow

Toroidal gap shorted by migrating lithium

Large B-normal component during *vacuum* shot ejected lithium after DC break was shorted CDX-U

Multi-kA toroidal current resulted in substantial jxB force on lithium

- Lithium wet, bridged toroidal electrical break
- OH swing induced ~5 kA in the lithium
- All lithium ejected

Lithium migration appears to depend on temperature

CDX-U

 Underside of tray shows more lithium where heaters are closest to edge of tray

Plasma Facing Components Meeting Livermore, California 6-9 December 2004 PPPL

Solution was to modify heater configuration

LTX

Circular
heaters
replaced with
new "strip"
type located
near center of
tray

tray halves increased and heaters kept away from them

New geometry successful in localizing lithium but problems with heaters ended campaign CDX-U

 More localized heating kept lithium away from edges of limiter tray

- Heaters failed shortly after most recent lithium fill in October 2004
 - Cause to be investigated after next vent

- Next phase will begin later in December or January
 - Operation with coated center stack
 - » Large plasma contact area expected to affect recycling
 - Coating source development nearing completion
 - » Presently looking at both resistively heated and ebeam lithium evaporation sources
- Expect to shut down for conversion to LTX in early 2005

After the tray: tests of coated limiters for NSTX, LTX

(Winter 04) CDX-U

Plasma Facing Components Meeting Livermore, California 6-9 December 2004

Work begun on Lithium Tokamak Experiment (LTX)

CDX-U

- Physics Goals:
 - Access to novel tokamak regimes with very low recycling walls
 - » Broad/flat T_e, T_i profiles with no or small conduction losses
 - Control of the n_e, T_e, I_p profiles with the fueling profile
- Technical Features:
 - Conducting conformal shell
 - Evaporative coating on inner surface
 - » Kept above lithium melting temperature to provide liquid lithium PFC

Design for LTX Conducting Shell Finalized

CDX-U

• Explosively bonded 0.062" layer of 304SS on 0.375" chromium copper

LTX Conducting Shell to fit in CDX-U Vacuum Vessel CDX-U

Shell is designed with toroidal, poloidal gaps

- electrical breaks + diagnostic access
- Circular penetrations for coating systems

First 2' x 8' sheet of bonded SS-CrCu material ordered for testing

CDX-U

Sections to be CNCed flat with all welding, necking details

- Formed by rolling or hydraulic press
 - Simple 2D stamping; modest size (~16" x 20")
 - Total of 28 formed sections required
- Butt weld on interior SS surface to join sections
- Support lips, necking added
- Fixturing for heaters

